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Abstract. The endangered Acropora cervicornis coral has been considered a bellwether for coral reef habitat 
change. Given the recent discovery of a concentrated region of growth off Belize, our group is studying 
automatic abundance estimation of live A. cervicornis with the goal of future rapid assessment monitoring. In 
this paper we present a novel technique for the automatic segmentation of coral image sets. While others have 
had limited success applying machine learning techniques on color or texture-based features, our project 
presents several confounding factors in acquisition and in image content for which we must compensate. Our 
technique uses color features called quantile functions and SIFT texture features, and classifies local image 
regions as either live A. cervicornis or other image content using linear Support Vector Machines. We present 
promising results on a series of images for which we have manual segmentations to train with or test against.  
We also compare our results to those achieved using established raw color features. Our approach may not only 
greatly reduce the time cost of future abundance estimates of A. cervicornis, but also may be generalized to 
other coral vision problems. 
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Introduction 
Acropora cervicornis (Staghorn coral) has been a 
prolific Caribbean framework reef builder throughout 
the Pleistocene (Jackson 1992). Yet this species has 
suffered a precipitous and well documented decline in 
the Caribbean-Atlantic Sector since the 1980’s 
(Aronson and Precht 1997; Jackson 2001). It has been 
suggested that this collapse may be unprecedented for 
the recent geologic past (Aronson and Precht 2001; 
Greer et al. 2009). The species was added to the 
Endangered and Threatened Wildlife list (U.S. 
Department of the Interior) in 2007 and the once 
common coral is now rare on the vast majority of 
Caribbean reefs. Causes cited for the rapid decline of 
this (and other coral) species are virtually all tied 
directly or indirectly to human-induced environmental 
or climatic change (Hoegh-Guldberg 1999; Bellwood 
et al. 2004; Pandolfi et al. 2003) and white-band 
disease (Aronson and Precht 2001).  

Most living A. cervicornis now exist in small 
patches and isolated colonies, and A. cervicornis-
dominated ‘reefs’ are rare (Keck et al., 2005; Lirman 
et al. 2010). Our work suggests that an A. cervicornis 
refugium may exist off Ambergris Caye, Belize. In 
order to understand what environments/environmental 
factors promote survival and dominance of this 
species, skeletal framework and live tissue must be 
assessed in space and time.  Given the apparent 
sensitivity of this coral to a number of possible 

stressors, the rapid rate of recent decline, and the 
rarity of reefs dominated by the species, rapid 
assessment of live tissue abundance and skeletal 
volume of this coral is needed at this potential 
refugium site.  

Initial attempts at manual segmentation of live 
coral tissue from 62 calibrated m2 quadrat 
photographs were successful but intensely laborious. 
It can take up to 4 hours to accurately digitize live 
tissue in each m2 photograph of this morphologically 
complex species. Though point count methods are 
more efficient at low sample size, they may yield less 
than the desirable precision of 5%, given the 
heterogeneous and highly variable coverage in this 
dataset (Pante and Dustan 2012). Additionally, larger 
scale methods have shown limited accuracy (Hedley 
et al. 2004). 

In order to assess the full extent of reef framework 
and live coral tissue, high precision rapid assessment 
is needed. In the following we describe our initial 
work toward automating this task through the use of 
machine learning.   

Related Work 
There has been extensive work in color and texture-
based segmentation of biological images in general 
and coral habitat in particular (Cheng et al. 2001).   
Many successful methods fall under the term 
supervised learning and involve training some kind of  
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classifier on local image features.  When given a 
previously unlabeled feature, the classifier decides 
the label.  These features are usually acquired using a 
training set of manually segmented or selected 
images.  A classifier is fed these training features 
along with their class types and it determines some 
pattern for discriminating between the classes.   

The astounding variability in classification 
methods comes from the variety of potential choices 
of both the image feature type and classifier.  Marcos 
et al. (2005) used the combination of both texture 
features (as Local Binary Patterns) and color features 
(as Normalized Chromaticity and Hue-Saturation-
Value) to train a neural network to classify living 
coral, dead coral, and sand on the Great Barrier Reef. 
Purser et al. (2009) used custom grating texture 
features and a self-organizing feature map to help 
differentiate between coral, sponge, and sand in cold-
water coral habitats. 

The work described in this paper most readily 
extends from Mehta et al. (2007).  There, the authors 
used as a feature vector the concatenated raw pixel 
intensities within an N x N region, or image patch.  
Such features were computed at 100 epitomizing 
regions for corymbose, branching, and tabulate 
Acropora in a number of training images.  Non-linear 
Support Vector Machines (SVMs) were used to 
provide a binary classification for each of the three 
coral morphology types in a one-against-all manner. 
The accuracy of classification varied among 
morphology types. SVMs can be useful classifiers in 
the context of highly variable coral imaging in that 
they are inherently stable in the presence of outliers. 

Unlike the above work, our goal was to 
discriminate between live A. cervicornis and all other 
content, including other live branching and non-
branching coral, dead A. cervicornis, algal cover, 
water, and hardground surfaces. Our project 
addresses several confounding factors in data 
acquisition and in image content that lead us to 
alternative choices from those in prior work.  

Quadrat selection results in distortion that blurs the 
characteristic texture of A. cervicornis in parts of 
each image. Additionally, the image objects are 
viewed from many perspectives within and across 
images due to surface wave disturbance during photo 
acquisition. We have observed that under these 
conditions, the raw patch feature of Mehta et al. 
(2007), which assumes a pixel-scale correspondence 
across patches, results in little information gained 
about the collection of patches beyond their average 
color.  To accommodate this variability and recover 
more subtle information about collections of patches, 
we used the regional intensity quantile function (QF) 
as a color feature.  The QF captures the distribution of 
intensities within an image patch.  Furthermore, these 

features are rotationally invariant and are amenable to 
linear statistical methods, such as the relatively 
efficient linear SVM that we use to determine our 
classifier.  

In the following we describe QFs and their 
advantageous use in this context, and to a lesser 

A.  

B.  

C.  

D.  
Figure 1: Example result (top to bottom): A) typical reef quadrat 
image; B) manual trace of live A. cervicornis; C) visualization of the 
local color-based classifier score; D) final automatic segmentation. 
Note the manual result both includes and excludes the tape.  The 
automatic result reflects a Dice coefficient of .745 (see Results). 
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extent we describe our use of the well-established 
SIFT texture feature and linear SVM classifier (Lowe 
1999; Cortes and Vapnik 1995).  We present results 
on our 62-image series using both the color and 
texture features computed at multiple scales (Fig. 1). 

 
Materials and Methods 
This section includes a detailed description of the 
construction of QFs, followed by brief reviews of 
SIFTs and linear SVMs.  We conclude with our 
experimental setup. 

Regional Intensity Quantile Functions 
Broadhurst et al. (2006) describe an approach for 
probabilistically representing the appearance of an 
object region within an image in the context of 
medical image segmentation. The basic unit of 
appearance is the regional intensity quantile function 
(QF), derived from the single-channel intensity 
histogram within an image patch.  Quantile functions 
were computed for each of the red, green, and blue 
color channels and the concatenated result was used 
as the patch feature provided to the SVM.  Fig. 2 
shows the average QFs for live A. cervicornis and 
anything else.  

 

Figure 2: QF feature variability over a dense grid in an example 
image. Bold for live A. cervicornis and dotted for other, with mean 
(thick) and ±2σ (thin) curves, which can indicate intensities outside 
the possible [0,1].  Note that live tends to be brighter, while the 
significant overlap suggests the difficulty of classification here. 

 
Quantile functions are a useful parameterization of 

one-dimensional distributions. For example, certain 
common changes in a distribution, such as mean shift 
and variance scaling, are represented as linear 
changes in the QF feature space.  The QF space thus 
confers improved efficiency to the extent that these 
are common differences for corresponding 
distributions to have, as in different patches of A. 
cervicornis within an image.  

    If q and r are the continuous, one-dimensional 
intensity distributions in two regions between which 
we wish to measure the similarity. The Mallows, or 
Earth Mover’s distance (Levina 2002) between q and 
r, with cumulative distribution functions Q and R, 
respectively, is defined as 

 

An n-dimensional QF is then the discretized inverse 
cumulative distribution function on intensities in a 
region, i.e., Q-1(t) or R−1(t) in the above equation.  
Rather than provide the percentile given the variable 
value as the cumulative distribution does, the QF 
provides the variable value given the percentile score.  
Let these discretized quantile functions be denoted q 
or r. Coordinate j of q or r stores the average of the 
[( j−1)/n ,  j/n] quantile of the intensity distribution for 
that patch, i.e,  

 
After discretization, the Mallows distance above 
corresponds (up to a scale factor) to the Lp vector 
norm between q and r. 

Through quantile functions, patch-scale intensity 
distributions are understood as points in an n-
dimensional Euclidean space in which distance 
corresponds to the M2 metric, and mean and variance 
changes in intensities are linear.  

Figure 3: Average SIFT features over a dense grid in an example 
image (blue), with a visualization of each component’s standard 
deviation (red), for live tissue (top) and other (bottom). Note that the 
live coral, as might be expected, tends to have higher contrast and 
more consistent structure than the class of everything else. 

SIFT: Scale-Invariant Feature Transform 
The SIFT texture feature is a representation of the 
distribution of gradients (or edge orientations) within 
some image patch (Lowe 1999).  This feature has 
been extensively proven in object recognition tasks, 
where a particular object or class of object is viewed 
from varying orientations and scales across images 
(Mikolajczyk and Schmid 2005).  With this in mind, 
we tested the ability of SIFT features to discriminate 
live A. cervicornis through a linear SVM classifier.   

We used an open MATLAB implementation which 
decomposes each image patch into 16 equal parts, 
determining for each part an 8-dimensional histogram 
of the gradient energy in the 8 cardinal directions 
(Lazebnik et al. 2006).  The resulting feature is thus 
128 dimensions for each image patch (see Fig. 3). 
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Linear Support Vector Machines 
Support Vector Machines (SVMs) have become a 
popular means of learning two-group classifiers since 
their introduction by Cortes and Vapnik (1995).  The 
most basic algorithm learns a discriminating 
hyperplane in a mapping of a feature space for which 
there is a sample population, including explicitly 
labeled positive and negative cases.  In the case where 
features in the unmapped (or linearly mapped) space 
are thought to be separable, linear SVM is an efficient 
algorithm for determining the decision boundary 
given by 

 
where w and q are column vectors representing the 
hyperplane normal and feature descriptor, and b is the 
distance of the hyperplane to the origin in the space.  
Note that the classifier response is continuous and can 
be considered a confidence (Fig. 1). In validation, 
these confidences can be used along with the correct 
label for each patch to generate a precision-recall 
curve describing the strength of the classifier.   

In our case, features were acquired from a dense 
grid of patches in a training image, where the labeling 
was inferred by comparing the patch support to a 
binary image of the manual trace (Fig. 4). QF and 
SIFT features were trained separately, as they exist in 
inherently different spaces. We used an open 
MATLAB implementation for linear SVM training 
(Yang et al. 2009). 

  
Experimental Setup 

Video line-transect and photographic m2 quadrat 
survey data were collected in 2011. A total of sixty-
two quadrat photos were digitized and scaled, and all 
live A. cervicornis tissue was manually segmented in 
map view (Fig. 4). We consider this sample 
representative of the larger local reef structure, though 
that belief will be tested in future surveys. 

Due to highly variable white balance within images, 
results were improved by the additional preprocessing 
step of adaptive contrast enhancement, simply 
equalizing the local luminance across the image while 
maintaining color.   

For each image we sampled a dense grid of non-
overlapping patches, with different grids for different 

scale patches (we tested 8, 16, 24, and 32 pixel square 
patches). These image patches along with their 
corresponding labels from the manual segmentation 
were fed to a linear SVM.  We thus obtained 
classifiers for each scale within each image separately.    

We tested each image against the training SVMs 
given by the other images in leave-one-out tests.  In 
practice it would not make sense to manually trace all 
but one image, but for this initial experiment, it is 
informative to have all possible results given the 
choice of training image (see Discussion). 
 
Results 
We report the average precision (AP), or area under 
the precision-recall curve, as well as the Dice 
Similarity Coefficient (DSC), common measures in 
the image segmentation literature. AP measures the 
strength of a classifier over all possible decision 
boundaries. The DSC is the ratio of the intersection 
and the average of the two classifiers (automatic and 
manual) given a particular decision boundary (here, 
an SVM response greater than zero).  

Our method achieved an overall AP of 72.1% using 
the color QFs as features, versus 71.4% using the raw 
color feature described in Mehta et al. (2007). Further, 
color QFs led to an average improvement in AP of 
2.2% in 34 of 62 cases, with an average decline of 
1.1% in the others. Thus, color QFs were better more 
often and better by more, though the raw color 
features were similarly successful overall. Also of 
note is that color QFs outperformed raw color features 
in 19 of the 25 difficult cases of less than average AP. 

The overall DSC was 63.8%, with the classifier 
exceeding 60% DSC in 29 of 62 images. These results 
are consistent with validation literature in other fields 
in the case of long thin structures with a large 
boundary relative to area (Gerig et al. 2001). Fig. 5 
shows examples achieving both low and high DSC. 
The abundance estimate over the entire study was 
26.7%, versus 32.3% with the manual raters. 

Results using the SIFT texture features were 
extremely noisy and appear to be of little value, at 
least given our training scheme.  The SIFT features 
led to an average DSC of 17.1 %.  
 
Discussion 
In this paper we presented results of a supervised 
learning system for the segmentation of live A. 
cervicornis in images with strong confounding factors. 
We achieved encouraging success using intensity 
quantile functions on color channels, which lead to 
improved results over raw color features.  

In continuing on this front, it will be difficult to 
qualify our results without some estimates of inter-
rater variability. Anecdotal evidence suggests there is 
some difference in the manual tracings of different 

 
Figure 4: Close-up of A. cervicornis with manual trace outline. 
Average basal branch thickness is ~1.5 cm) 
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raters over such a collection of high-resolution 
photographs.  The goal of any automatic classifier can 
only be to differ from human raters no more than 
human raters differ from each other. 

There are a number of directions to explore in 
potentially improving the segmentation quality and 
thus live tissue abundance estimates.  While the SIFT 
features appear less informative than the QF-based 
features, there are published methods of more 
effectively combining classifiers of varying accuracy 
(Rohlfing et al. 2004). We will also consider 
alternative machine learning techniques to apply to 
our features for comparison against linear SVM.  

Another goal is to determine the appropriate 
training image to use as the statistical atlas for any 
test case. Simple measures, such as average color 
similarity, do not correlate with the outcome AP. We 
must find what constitutes an effective training set. 

Lastly, ongoing work is focused on the pre-process 
phase where we hope to correct the effect of the 
measuring tape and of errors in the quadrat selection 
that affect both our results and computed abundance 
estimates. In fact, it should be possible to perform the 
presented classification prior to quadrat selection. The 
longer term goal is to better automate rapid 
assessment monitoring efforts post acquisition. We 
envision a system with all the various post-acquisition 
steps integrated, from tract selection in photography 
to interactive trace correction using an adaptive 
classifier based on the presented color quantiles and 
potentially texture features. 

Ultimately, we hope the methods generated here 
and in refinement will provide a crucial speed and 
efficiency for A. cervicornis coral monitoring efforts 
in the few remaining documented refugia.  
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