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Abstract. While many studies have investigated  histological changes occurring in cnidarians during bleaching, 

only a few have focused on continuing changes in tissues during the recovery period.  Here, we examine the 

response of the sea anemone Aiptasia pallida to a transient elevation of water temperature combined with high 

illumination.  Following 30h of exposure to stress conditions (33°C and 1900 μE/m
2
.s), anemones show a 

significant reduction in their Symbiodinium concentration followed by a progressive recovery over 8 weeks.  

Histological analyses show an increase in cell proliferation in both ectoderm and gastroderm tissues one day 

following the stress.  This increased proliferation seems to be sustained after 3 weeks before returning to normal 

after 8 weeks.  Moreover, our results show a progressive increase in the number of ectodermal mucocytes over 

3 weeks before returning to a normal level after 8 weeks.  While the new cells formed in the gastroderm would 

most likely host new Symbiodinium, the fate of new cells in the ectoderm is still not completely understood.  

These new cells may contribute to the increased number of mucocytes which could eventually help shift the 

feeding mode temporarily to a heterotrophic state until restoration of the symbiosis. 
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Introduction 

High water temperature and solar irradiance are 

known to disrupt the symbiosis established between 

scleractinian corals and algae of the genus 

Symbiodinium.  Studies have shown that these 

environmental factors can act both separately (Brown 

and Suharsono 1990; Gates 1990; Jokiel and Coles 

1990; Goreau and Hayes 1994; Brown et al. 1996; 

LeTissier and Brown 1996) and in combination 

(Lesser et al. 1990; Glynn 1993; Lesser and Farrell 

2004; Hoegh-Guldberg et al. 2007; Weis 2008).  This 

process, known as coral bleaching typically involves 

loss of algal pigmentation and can deprive the host 

from its main energy source.  During the following 

weeks the nutritional state of the coral is therefore 

compromised.  Depending on the symbiont/host 

association and the intensity of the stress, it could 

either die or recover with the same or altered algal 

communities (McClanahan 2004; McClanahan et al. 

2004; Tchernov et al. 2011). 

Although bleaching could sometimes be limited to 

a decrease in chlorophyll concentration, many studies 

have focused on the mechanisms involved in 

Symbiodinium loss. While many scenarios like 

symbiont digestion via autophagy (Dunn et al. 2007; 

Downs et al. 2009), symbiont expulsion (Steen and 

Muscatine 1987; Sandeman 2006) and host cell 

detachment (Gates et al. 1992; Brown et al. 1995; 

Sawyer and Muscatine 2001) have been considered 

(Weis 2008), most of the recent findings argue for a 

mechanism implying the death of the host cell either 

by necrosis or through the apoptotic pathway (Dunn 

et al. 2000; Dunn et al. 2002; Dunn et al. 2004; Kvitt 

et al. 2011; Pernice et al. 2011; Tchernov et al. 2011).   

Although several studies have documented the 

recovery of coral from bleaching (Brown and 

Suharsono 1990; Hayes and Bush 1990; Fitt et al. 

1993; Baker et al. 2004), little information has been 

gathered concerning the histological modifications 

occurring during this recovery (Hayes and Bush 

1990).  We hypothesize that host cells lost during 

bleaching should be replaced by new ones in order to 

regenerate the damaged gastroderm and so that it can 

host new algae.  To address our hypothesis we 

investigated the cellular proliferation following a 

heat-induced bleaching in the zooxanthelate sea 

anemone Aiptasia pallida, often used as a model 

cnidarian (Lesser 1989; Muscatine et al. 1991; Cook 

and Davy 2001).   

 

Material and Methods 

Sea Anemones 

All Aiptasia pallida specimens came from a few 

populations originating from the aquarium of the 

University of Liège.  Those specimens were 

multiplied in an aquarium in our laboratory using 

artificial seawater held at 26°C and were fed on a 

weekly basis with frozen Artemia shrimp.  For our 
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experiments we selected specimens presenting a 

column height of approximately 1cm. 

 

Bleaching procedure 

A first group of 6 anemones was subjected to our 

bleaching procedure in order to confirm its 

effectiveness.  They were placed in Petri dishes in 

which the water was constantly renewed by a flow-

through mechanism using a peristaltic pump.  They 

were then exposed for 30 hours to a water 

temperature of 33°C and an illumination of 

approximately 2000 µmol of photons/m
2
 (measured in 

the water of the dishes) produced by led bulbs (12W, 

6000K, Elix Belgium).  They were then allowed to 

recover in an isolated area of the stock aquarium 

(26°C, approx 30 µmol of photons/m
2
) for 24h and 8 

weeks.  A second group of 15 anemones was 

subjected to the same treatment.  They were also 

allowed to recover in an isolated area of the stock 

aquarium.  Seven anemones were collected after 24h, 

another four after 3 weeks and a further four after 8 

weeks for histological analysis.  An equal number of 

healthy anemones were collected in the stock 

aquarium at each time point which served as controls. 

 

Symbiodinium density 

Symbiodinium density was evaluated in healthy 

anemones from the stock aquarium and bleached 

anemones having recovered for 24h and 8 weeks.  

Three anemones of each group were fixed using a 

30% formaldehyde solution before being slightly 

dried in absorbent paper and weighed using an 

analytical scale.  They were subsequently crushed in a 

glass potter with a precise quantity of filtered 

seawater (Muscatine et al. 1991; Perez et al. 2001).  

The number of Symbiodinium cells was estimated 

under the microscope using a haematocytometer.  Six 

counts were averaged for each anemone.  Using the 

weight of the anemones and the quantity of water 

used, we calculated the density of Symbiodinium per 

mg of fresh tissue (wet weight). 

 

Cell proliferation 

Cell proliferation assays consisted of counting nuclei 

which incorporated thymidine analogue during DNA 

synthesis.  They were conducted on control and 

bleached anemones isolated 24h, 3 weeks and 8 

weeks after bleaching.  To do so, each anemone of 

these treatments was incubated for 24h in a solution 

of 1 µM EdU (5-ethynyl-2’-deoxyuridine, thymidine 

analogue, Invitrogen, Eugene-Oregon-USA) in 

seawater.  Anemones were then anesthetized for 20 

minutes in a 1:1 solution of seawater and 0.37M 

MgCl2 before fixation in a solution of 4% 

paraformaldehyde in seawater.  Fixed specimens were 

subsequently dehydrated, embedded in paraffin 

(paraplast Xtra, Sigma), cut into 5µm thick slices and 

finally placed on silane-coated slides.  After 

dissolution of the paraffin, re-hydration and PBS 

washes, the slides were incubated for 10 minutes in a 

blocking solution of 3% BSA in PBS in order to 

prevent non-specific interactions.  This was followed 

by a permeabilization procedure of 20 minutes in a 

solution of 0.5% Triton x-100 in PBS prior to three 

PBS washes and incubation for 30 minutes in the 

reaction mix made from the Click-iT EdU kit (Click-it 

EdU Alexa Fluor 488 Imaging Kit, Invitrogen, 

Eugene-Oregon-USA).  The fluorescent dye provided 

in this kit binds to EdU using a simple chemical 

reaction (azide/alkyne) and therefore doesn't require 

DNA denaturation as needed when using antibodies.  

Finally, the slides were washed three more times in 

PBS, dried and mounted for epifluorescence 

microscopy (Vectashield + DAPI, Vektor labs). 

 

Mucus staining 

Mucus staining was performed on slides obtained 

from the same specimens as for cell proliferation 

assays.  After deparaffinisation, the slides were 

incubated for 2 minutes in alcian blue (Merk).  They 

were then washed several times in distilled water, 

dehydrated and mounted for light microscopy. 

 

Analysis and Statistics 

EdU-positive nuclei and mucocyte mean densities 

were calculated from five counts made in tentacle 

sections using Nikon NIS software v3.1.  Densities 

were estimated from the surface of the ectoderm and 

expressed per square millimeter.  Ectodermal surface 

densities were used because the gastroderm surface is 

affected by the bleaching and the tentacle 

circumference doesn’t correlate to the amount of cells 

present in the slice because of the eventual 

contraction of the tentacle.  Statistical analyses 

revealed that there was no significant difference 

between controls obtained from 24h, 3 weeks and 8 

weeks.  They were therefore pooled together as a 

single control group for subsequent analyses.  

Statistical analyses (non-parametric Kruskal-Wallis 

test or ANOVA) were performed using Statistica v8.0.  

 

Results 

Bleaching 

The light and temperature treatment successfully 

bleached anemones, reducing their Symbiodinium 

density by almost a factor 10 (Fig. 1).  Anemones of 

the control group showed a density of 122 ± 6.3 x 10
3
 

(mean ± SE) algae per mg of fresh tissue while this 

value dropped to 15.3 ± 2.1 x 10
3
 24 hours after the 

end of the treatment (p < 0.05).   
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Anemones recovered from bleaching and 

Symbiodinium densities returned to pre-treatment 

values 8 weeks after the end of the treatment with a 

density of 95.4 ± 11.4 x 10
3
 (p > 0.05). 
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Figure 1: Symbiodinium mean densities in anemones of the control 

group and the bleaching treatment groups (24h and 8 weeks of 

recovery).  Bars represent standard error. ( * p < 0.05) 
 

Cell proliferation 

In the gastroderm of the bleached anemones, the 

number of EdU-positive nuclei exhibited a transient 

increase following the stress period (Fig. 2).  The 

control group showed a density of positive nuclei of 

36 ± 6/mm
2
 while the 24h group underwent a 

significant increase in density to 323 ± 76 positive 

nuclei/mm
2
 (p < 0.001).  After 3 weeks, the number 

of positive nuclei showed an intermediate value (157 

± 30 positive nuclei/mm
2
), which was not 

significantly different from either the control group or 

the 24h group.  After 8 weeks, the density returned to 

control values (32 ± 8 positive nuclei/mm
2
). 
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Figure 2: EdU-positive nuclei mean densities in the gastroderm of 

anemones of the control group and the bleaching treatment groups 

(24h, 3 weeks and 8 weeks of recovery).  Bars represent standard 

error.  ( ** p < 0,001) 
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Figure 3: EdU-positive nuclei mean densities in the ectoderm of 

anemones of the control group and the bleaching treatment groups 

(24h, 3 weeks and 8 weeks of recovery).  Bars represent standard 

error.  ( ** p < 0,001) 

 

In the ectoderm, we observed the same trend as in 

the gastroderm, that is, a transient increase in the 

number of EdU-positive nuclei (Fig. 3).  The control 

group had 398 ± 78 positive nuclei/mm
2
; increasing to 

1244 ± 277 positive nuclei/mm
2
 in the 24h group (p < 

0.001).  After 3 weeks the number of positive nuclei 

was still high (1333 ± 420 positive nuclei/mm
2
) but 

not significantly different from either the control or 

the 24h group.  Finally, 8 weeks following the stress 

period, the densities declined to 264 ± 75 positive 

nuclei/mm
2
, similar to those of the control group. 
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Figure 3: Mucocyte mean densities in the ectoderm of anemones of 
the control group and the bleaching treatment groups (24h, 3 weeks 

and 8 weeks of recovery).  Bars represent standard error.  ( * p < 

0,05) 

 

Mucocytes 

Anemones of the control group had 67 ± 6 mucocytes 

per square millimeter of ectoderm.  This value was 

similar in the 24h group with a density of 80 ± 9 

mucocytes/mm
2
.  Mucocyte density increased 

significantly to 116 ± 12/mm
2
 in the group sampled at 

3 weeks (p < 0.005) before returning to levels similar 

** 

** 

* 
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to that of the control group (50 ± 20/mm
2
) after 8 

weeks of recovery. 
 

Discussion 

Recent studies have put emphasis on mechanisms 

involved in the loss of symbiotic algae during coral 

bleaching.  Many highlighted that this event could 

occur through the loss of the gastrodermal host cells, 

leaving this tissue heavily damaged (Gates et al. 

1992; Sawyer and Muscatine 2001).  Here we showed 

an increase in the cellular proliferation following 

bleaching in the sea anemone Aiptasia pallida. 

Our results show a rapid increase in the number of 

EdU-positive nuclei contained in the host gastroderm, 

reaching values almost ten times higher than the 

control group only 24 hours after the end of the 

bleaching procedure.  This suggests that a massive 

cellular proliferation is initiated in the gastroderm of 

the already bleached anemones, most likely to 

regenerate the damaged tissue.  The proliferation rate 

slows down during the weeks following the bleaching 

and finally returns to normal values after 8 weeks.  By 

this time, anemones progressively regained their algal 

symbionts whose densities, initially reduced by 90%, 

were then similar to unbleached anemones.  These 

new algae most likely come from the proliferation of 

those that remained in the bleached host as the sea-

water used in our experiments was artificial and thus 

lacked any live Symbiodinium.  These observations 

firstly confirm previous studies reporting the loss of 

host cells during bleaching (Dunn et al. 2002; Dunn et 

al. 2004; Tchernov et al. 2011) and secondly suggest 

that gastrodermal regeneration could be an important 

step in the recovery of bleached cnidarians. 

Our results also illustrate a more surprising 

increase in the amount of EdU positive nuclei in the 

ectoderm of bleached anemones.  The ectoderm is 

reported in the literature to suffer only little or no 

damage following bleaching (Dunn et al. 2004); our 

observations are thus not likely to be related to some 

kind of regeneration process.  Another plausible 

explanation would be an augmentation in the 

production and turnover of some cellular phenotypes 

that could improve the survival of the bleached host.  

We chose here to focus on mucocytes, a cellular type 

that has often been reported to be crucial for the 

holobiont (Bythell and Wild 2011) and whose 

response to bleaching is not yet completely 

understood (Lasker et al. 1984; Glynn et al. 1985; 

Niggl et al. 2008; Fitt et al. 2009; Piggot et al. 2009; 

Wooldridge 2009).  Mucus has multiple functions in 

the holobiont such as UV protection, microbial 

defense, sediment cleansing, energy carrying and 

particle trapping (Lewis and Price 1975; Lewis 1977; 

Schlichter and Brendelberger 1998; Goldberg 2002; 

Brown and Bythell 2005; Niggl et al. 2008; Bythell 

and Wild 2011).  In the bleached anemone, the mucus 

ability to trap particles and carry them to the mouth of 

the host could be of great interest after bleaching.  

Heterotrophic feeding could indeed sustain the host 

energy incomes and compensate for the missing algal 

autotrophic contribution (Brown and Bythell 2005; 

Grottoli et al. 2006; Niggl et al. 2008).  Augmentation 

of mucus production could also help to protect the 

bleached and thus more susceptible host against UV 

radiation or pathogen aggressions (Brown and Bythell 

2005; Niggl et al. 2008).  Here we observed a 

significant augmentation of mucocyte density in the 

ectoderm 3 weeks after bleaching.  This density 

returned to values similar to those of the control 

group after 8 weeks recovery.  Considering this, some 

of the newly produced EdU-positive nuclei in the 

ectodermal layer could differentiate into mucocytes 

and explain the higher number of mucocytes in the 

bleached anemones.  The lag period observed 

between the augmentation of EdU-positive nuclei and 

the augmentation of mucocytes would then account 

for the time needed for their migration and 

differentiation.  

However, it is still unclear whether it is the stress 

itself or the consequent reduction in algal number that 

induces the cellular proliferation we highlighted here.  

This remark especially concerns the ectoderm which 

is not directly affected by the effects of algal loss.  

Further investigations with shorter incubation periods 

conducted during and directly after the stress 

treatment will help clarify this matter.  
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